Acta Cryst. (1996). C52, 2476-2477

Sodium 1-Naphthylamine-6-sulfonate-Water (1/4)

JIN-LING WANG,* GUI-PING LI, LI-JUAN ZHANG, BO LI, SHI-KUN MA, ZHONG-CHENG NIU AND FANG-MING MIAO

Institute of Crystallography, Tianjin Normal University, Tianjin 300074, People's Republic of China

(Received 27 June 1994; accepted 30 August 1995)

Abstract

2476

A feature of the title compound, sodium 5-amino-2-naphthalenesulfonate-water (1/4), Na⁺.C₁₀H₈NO₃S⁻.-4H₂O, is that the Na⁺ ions are coordinated by distorted edge-sharing octahedra of water O atoms. The coordination distances around Na⁺ vary from 2.217 (8) to 2.80(1)Å.

Comment

Brown & Corbridge (1966) were first to determine the crystal data for naphthylaminesulfonic acid. We have reported previously the crystal structures of 1naphthylamine-6-sulfonic acid and its dihydrate (Miao, Wang & Li, 1993) and magnesium(II) 1-naphthylamine-6-sulfonate hexahydrate (Wang, Li & Miao, 1993). We report here the crystal structure of the title compound, (I), as the third part of this study.

The structure of (I) is composed of $[Na(H_2O)_4]^+_{\infty}$ cation chains and $C_{10}H_8NO_3S^-$ anions. The Na⁺ ions are surrounded by distorted edge-sharing octahedra of water O atoms, as is also found in both Na⁺.C₆H₉O₇⁻.H₂O (Bouwman, Peters, van Bekkum & Gorter, 1991) and Na⁺.C₅H₇O₄⁻.2H₂O (Macdonald, Morrison, Murray & Freer, 1991). The Na···O distances vary from 2.217 (8) to 2.80 (1) Å and the nonlinear $O \cdots Na \cdots O$ angles vary from 73.4 (1) to 102.9 (3)°. values which are close to those reported previously (Minemoto, Sonoda & Miki, 1992; Fitzgerald, Gallucci & Gerkin, 1991; Blackburn, Gallucci, Gerkin & Reppart, 1992). Bond lengths and angles in the anion are within the expected ranges. There are several hydrogen bonds associated with the crystal packing. One hydrogen bond connects the $Na(H_2O)_4^+$ ions with the amine N atom of the anion $[O(6)-H(61)\cdots N(1)]$, while the others connect the water molecules with the sulfonate O atoms of the anion (Table 3).

Fig. 1. The molecular structure of (I) with the atomic numbering and 50% probability displacement ellipsoids. A twofold axis passes through the O(4) and O(5) atoms.

Experimental

The title compound was prepared by reaction of Na₂CO₃ with 1-naphthylamine-6-sulfonic acid in aqueous solution and was isolated as a colourless salt.

Crystal data

 $Na^{+}.C_{10}H_{8}NO_{3}S^{-}.4H_{2}O$ Mo $K\alpha$ radiation $M_r = 317.30$ $\lambda = 0.71073 \text{ Å}$ Monoclinic Cell parameters from 25 C2/creflections $\theta = 5.69 - 10.96^{\circ}$ a = 28.787 (4) Å $\mu = 0.2712 \text{ mm}^{-1}$ b = 8.619(3) Å T = 298 Kc = 11.623(5) Å $\beta = 95.64(2)^{\circ}$ Prism $V = 2869.9(7) \text{ Å}^3$ $0.25 \times 0.20 \times 0.20$ mm Z = 8Colourless $D_x = 1.468 \text{ Mg m}^{-3}$ $D_m = 1.50 \text{ Mg m}^{-3}$ D_m measured by pycnometry

Data collection

Enraf-Nonius diffractometer
$\omega/2\theta$ scans
Absorption correction:
empirical via ψ scans
(Walker & Stuart, 1983)
$T_{\min} = 0.974, T_{\max} =$
0.999
3079 measured reflections
2928 independent reflections
1163 observed reflections
$[F_o > 3\sigma F_o]$

Refinement

Refinement on F R = 0.050wR = 0.058S = 0.8151163 reflections 231 parameters H-atom coordinates refined with $B_{\rm iso} = 4.0 \,\rm{\AA}^2$ w = 0 if $F_o \leq 3\sigma(F_o)$, w = 1.0 if $F_o < 48$ and $w = (48/F_o)^2$ if $F_o \ge 48$

 $R_{\rm int} = 0.025$ $\theta_{\rm max} = 23^{\circ}$ $h = 0 \rightarrow 34$ $k = 0 \rightarrow 9$ $l = -13 \rightarrow 13$ 3 standard reflections monitored every 400 reflections intensity decay: 3.98%

 $(\Delta/\sigma)_{\rm max} = 0.02$ $\Delta \rho_{\rm max} = 0.329 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.297 \ {\rm e} \ {\rm \AA}^{-3}$ Extinction correction: none Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

Acta Crystallographica Section C

ISSN 0108-2701 © 1996

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

$U_{\text{eq}} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

	x	у	z	U_{eq}
Na(1)	0.4734(1)	0.3787 (4)	0.1169 (2)	0.041 (1)
S(1)	0.10053 (7)	0.3722 (3)	0.2621 (2)	0.036(1)
O(1)	0.0818(2)	0.5065 (7)	0.2113 (6)	0.064 (8)
O(2)	0.0962 (2)	0.3753 (8)	0.3854 (4)	0.062(1)
O(3)	0.0822(2)	0.2324 (7)	0.2152 (6)	0.063 (2)
O(4)	1/2	0.5673 (8)	1/4	0.040 (2)
O(5)	1/2	0.1900 (8)	1/4	0.046 (2)
O(6)	0.4055(2)	0.4072 (7)	0.2721 (5)	0.054(1)
O(7)	0.4491 (2)	0.6008 (6)	-0.0094 (4)	0.048(1)
O(8)	0.4350(2)	0.1853 (7)	0.0245 (5)	0.067 (2)
N(1)	0.3334 (2)	0.2394 (8)	0.1508 (6)	0.051 (2)
C(1)	0.3037 (2)	0.3347 (8)	0.0953 (5)	0.034 (2)
C(2)	0.3203 (3)	0.4307 (9)	0.0088 (6)	0.038 (2)
C(3)	0.2915(3)	0.5348 (9)	-0.0431 (6)	0.042 (2)
C(4)	0.2449 (3)	0.5431 (8)	-0.0058 (6)	0.033(1)
C(5)	0.1782 (3)	0.4572 (8)	0.1257 (6)	0.028 (2)
C(6)	0.1604 (2)	0.3674 (8)	0.2136 (5)	0.025 (2)
C(7)	0.1882(2)	0.2590 (8)	0.2674 (6)	0.032 (2)
C(8)	0.2347 (3)	0.2495 (8)	0.2298 (6)	0.029 (2)
C(9)	0.2548(2)	0.3429 (7)	0.1388 (5)	0.025 (2)
C(10)	0.2264 (3)	0.4468 (7)	0.0841 (5)	0.025 (2)

Table 2. Selected geometric parameters (Å, °)

Na(1)	2.323 (7)	C(1)C(2)	1.42(1)
Na(1)-O(5)	2.321 (8)	C(1)—C(9)	1.54(1)
Na(1) - O(6)	2.80(1)	C(2) - C(3)	1.33(1)
Na(1)-O(7)	2.473 (7)	C(3)C(4)	1.45(1)
$Na(1) - O(7^{i})$	2.666 (8)	C(4) - C(10)	1.47(1)
Na(1)-O(8)	2.217 (8)	C(5)C(6)	1.42(1)
S(1) - O(1)	1.385 (7)	C(6)—C(7)	1.34(1)
S(1)—O(2)	1.451 (6)	C(7)—C(8)	1.45(1)
S(1)—O(3)	1.405 (7)	C(8)—C(9)	1.49(1)
N(1)C(1)	1.31 (1)	C(9)—C(10)	1.33(1)
O(1)—S(1)—O(2)	109.7 (5)	C(6)C(5)C(10)	127.1 (8)
O(1) = S(1) = O(3)	115.8 (4)	S(1)C(6)C(5)	128.0 (6)
O(1) = S(1) = C(6)	102.9 (4)	S(1)C(6)C(7)	113.6 (6)
O(2) - S(1) - O(3)	109.5 (5)	C(5) - C(6) - C(7)	118.4 (8)
O(2) = S(1) = C(6)	118.1 (3)	C(6)—C(7)—C(8)	115.0 (8)
O(3) - S(1) - C(6)	100.7 (4)	C(7)C(8)C(9)	128.1 (8)
N(1) - C(1) - C(2)	117.7 (9)	C(1)C(9)C(8)	129.6 (7)
N(1) - C(1) - C(9)	116.1 (8)	C(1) - C(9) - C(10)	114.4 (7)
C(2) - C(1) - C(9)	125.9 (7)	C(8)-C(9)-C(10)	116.0 (8)
C(1) - C(2) - C(3)	118.4 (9)	C(4) - C(10) - C(5)	126.8 (7)
C(2) - C(3) - C(4)	116.9 (9)	C(4) - C(10) - C(9)	117.9 (8)
C(3) - C(4) - C(10)	126.4 (8)	C(5)-C(10)-C(9)	115.3 (7)

Symmetry code: (i) 1 - x, 1 - y, -z.

Table 3. Hydrogen-bonding geometry (Å, °)

$D - H \cdot \cdot \cdot A$	<i>D</i> Н	H···A	$D \cdot \cdot \cdot A$	$D = H \cdot \cdot \cdot A$				
$O(6) - H(61) \cdot \cdot \cdot N(1)$	0.75	2.11 (6)	2.79(1)	137.8 (6)				
$O(4)$ — $H(41) \cdots O(3^{i})$	0.75	2.10 (6)	2.82(1)	161.5 (6)				
$O(5) - H(51) \cdot \cdot \cdot O(1^{ii})$	0.68	2.23 (6)	2.91(1)	172.2 (6)				
$O(6) - H(62) \cdot \cdot \cdot O(3^{iii})$	0.72	2.26 (7)	2.83(1)	136.5 (7)				
O(7)-H(72)···O(2 ⁱⁱⁱ)	0.96	2.59 (6)	3.12(1)	170.2 (6)				
$O(8) - H(82) \cdot \cdot \cdot O(3^{iv})$	0.81	2.11 (6)	2.87(1)	157.4 (5)				
$O(8)$ — $H(81) \cdot \cdot \cdot O(2^{ii})$	0.78	2.27 (6)	3.04 (1)	168.9 (6)				
Symmetry codes: (i)	$\frac{1}{2} + x, \frac{1}{2}$	+ y, z; (ii)	$\frac{1}{2} - x, y - \frac{1}{2}$	$\frac{1}{2} - z$; (iii)				
$\frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{2} - z;$ (iv) $\frac{1}{2} - x, \frac{1}{2} - y, -z.$								

The title structure was solved by direct methods. Fullmatrix least squares were used for refinement on F, with anisotropic displacement parameters for non-H atoms and isotropic displacement parameters for H atoms. Calculations were performed on a VAX 3100 computer using the *MolEN* (Fair, 1990) program package for structure solution and refinement.

© 1996 International Union of Crystallography Printed in Great Britain – all rights reserved This work was supported by the Key Discipline Fund of Tianjin Higher Education in China.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: AB1205). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Blackburn, A. C., Gallucci, J. C., Gerkin, R. E. & Reppart, W. J. (1992). Acta Cryst. C48, 419-424.
- Bouwman, E., Peters, J. A., van Bekkum, H. & Gorter, S. (1991). Acta Cryst. C47, 1155-1158.
- Brown, C. J. & Corbridge, D. E. C. (1966). Acta Cryst. 21, 485-494. Fair, C. K. (1990). MolEN. An Interactive Intelligent System for
- Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands. Fitzgerald, L. J., Gallucci, J. C. & Gerkin, R. E. (1991). Acta Cryst.
- C47, 2315–2319.
- Macdonald, A. L., Morrison, P., Murray, A. & Freer, A. A. (1991). Acta Cryst. C47, 728-730.
- Miao, F.-M., Wang, J.-L. & Li, B. (1993). Symposium on Molecular Structure in China, AP3.
- Minemoto, H., Sonoda, N. & Miki, K. (1992). Acta Cryst. C48, 737-738.
- Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.
- Wang, J.-L., Li, B. & Miao, F.-M. (1993). Symposium on Molecular Structure in China, EP5.

Acta Cryst. (1996). C52, 2477-2480

Chlorotris(*p*-methylsulfonylphenyl)tin(IV)

IVOR WHARF, ANNE-MARIE LEBUIS AND HENRY LAMPARSKI

Chemistry Department, McGill University, 801 Sherbrooke St. W., Montreal, Quebec, Canada H3A 2K6. E-mail: wharf@omc.lan.mcgill.ca

(Received 4 April 1996; accepted 11 June 1996)

Abstract

The title compound, $[SnCl(C_7H_7O_2S)_3]$, crystallizes in an unusual space group for Ar₃SnCl compounds, namely, *Pna2*₁. The structure has $[-O - S(CH_3)(O) - C_6H_4(Ar)_2Sn(Cl) -]_n$ polymer chains zigzagging along the screw axis parallel to **c**, which are then closely packed to create a dense structure, unlike the open lattice found for the *tert*-butyl analogue. The molecular unit has distorted C_s symmetry, with one aryl group forming the pseudo-mirror plane. The environment around the Sn atom is quasi-five-coordinate, compared with that found in either four-coordinate monomeric Ph₃SnCl or in fivecoordinate Ph₃SnCl.L.